衰老机理研究进展(3)

时间:2021-03-03 19:54:01 论文范文 我要投稿

衰老机理研究进展

  2.体细胞系突变

  体细胞系mtDNA突变与氧自由基损伤关系密切。呼吸链反应(呼吸爆发)是产生氧自由基的重要来源,线粒体正是这一过程的重要场所,而且mtDNA缺乏修复能力,所以,mtDNA很易被自由基损伤并不断积累。年龄相关的体细胞mtDNa突变的积累与随增龄而出现的OXPHOS能力下降密切相关。

  体细胞系mtDNA突变即可能是碱基替换突变也可能是重组突变,重组突变又以片段缺失最为多见,缺失片段的长度及占总mtDNA的量决定了其产生影响的大小。近年来发现的mtDNA缺失类型已有十几种,不同的缺失类型有不同的组织特异性,其中骨骼肌、脑、心肌等是发生缺失较多的组织。有资料表明,mtDNA缺失突变引起的疾病常常是散发的,无家族史的,发病率随年龄而增加,这从反面说明了mtDNA缺失突变多为体细胞突变。

  体细胞系mtDNA突变与生殖细胞系mtDNA突变所产生的生理效应相加,如被遗传的有缺陷的mtDNA越少,则引起发病所需体细胞mtDNA的损伤就越多,由此引起有关的器官衰竭所要求的mtDNA损伤积累需要的时间也越长;反之亦然。也就是说,年龄相关的mtDNA突变的积累所致的分裂后组织的OXPHOS功能的渐进性丧失会增加遗传缺陷所造成的OXPHOS缺陷,这可能是造成某些线粒体疾病晚发病及渐进性加重的原因之一。

  (二)mtDNA突变与衰老及与年龄相关的退行性疾病的关系

  体细胞系mtDNA突变的积累与人类组织器官(脑、心肌、骨骼肌、皮肤、肝、卵母细胞及精子等)衰老、机体衰老及许多老年性退行性疾病密切相关,Wallace等发现,40多岁的正常人的心脏及脑有5kb、7。4kb片段缺失,缺失频率随增龄而增加。许多资料证明,mtDNA突变随增龄而积累,机体寿命与基础代谢率呈反比而与氧自由基清除率呈正比。这均说明随增龄而OXPHOS功能的下降可能是mtDNA氧化损伤积累的结果。

  1.MtDNA突变与老年心血管疾病

  在心血管疾病方面,已经发现扩张性心肌病和肥厚性心肌病均存在mtDNA的片段缺失和点突变,有的甚至可见多个片段缺失,缺失常位于ATPase6和D环区的7。4kb片段缺失。研究提示mtDNA突变与衰老、心肌缺血、老年心衰及“老年心脏”等老年性心脏疾病的发生有关,主要是mtDNA的片段的缺失。衰老心肌中mtDNA的片段缺失和OXPHOS中酶活性下降可能导致自由基介导的脂类过氧化反应加速,这可能是形成动脉粥样硬化斑块的原因之一。

  2.MtDNA突变与老年中枢神经系统的退行性改变及疾病

  中枢神经系统的退行性改变及疾病是老年人的常见疾病。研究资料提示Parkinson病(PD)、Alzheimer病(AD)和Huntington病(HD)是中枢神经系统与OXPHOS缺陷关系最为密切的几种退行性疾病,均有不同程度的mtDNA突变。

  PD是一组以运动失调为主的临床综合症,其黑质纹状体内多巴胺神经元变性是主要病理特征。研究发现PD患者脑细胞呼吸链复合物I活性下降,黑质尤为明显,其复合物I的mtDNA编码亚单位减少。患者mtDNA有5。0kb片段缺失,发生率约为对照组的10倍,而且,不论患者的脑组织还是肌组织其约粒体均存在异质体,这提示当缺失型mtDNA数量超过一定阈值时才会发症。AD是一类以渐进性痴呆和脑皮质萎缩为主要特征的老年性疾病。许多研究曾集中于β—淀粉样前体蛋白的基因突变与β—淀粉样前体蛋白成份的异常,但这类病例只占患者的很少一部分。目前的研究表明mtDNAT突变和OXPHOS缺陷可能是该病的一个重要原因。Parker等(1992)发现6例AD患者中5例存在复合物IV的OXPHOS缺陷。也有研究发现AD患者脑新皮质匀浆中存在OXPHOS偶联缺陷并有mtDNA点突变及缺失突变,因此,AD的发展在某种程度上与mtDNA突变及OXPHOS缺陷有关,其中包括触小体的退行性变。

  HD是以成年期发病的运动失调和渐进性痴呆为主要特征的常染色体显性遗传病,病理特点是基底神经节的退行性变。在HD患者脑中发现豆状而非皮质中复合物IV的缺陷,血小板线粒体有复合物I的缺陷。HD表现一定的母系遗传化倾向。这些资料表明,HD的发生、发展可能与mtDNA突变有关。

  3.MtDNA突变与非胰岛素依赖型糖尿病

  非胰岛素依赖型糖尿病是一种年龄相关性疾病,是老年人最常见的一种内分泌系疾病。本病也出现退行性疾病特征,其发病与线料体OXPHOS功能缺陷有密切关系。线粒体的OXPHOS在葡萄糖诱导胰岛β细胞分泌胰岛素过程中起重要作用。研究表明,成年期糖尿病患者存在mtDNA的异质均有异质体10。4kbmtDNA的片段缺失,缺失位于4389—14812位点之间,缺失部分包括L链起点(O2)和除rRNa、ND1部分cytb和相邻的RNA外的所有mtDNA编码基因。缺失后的mtDNA分子小因而具有自制优势,易于在细胞内聚积而使异质体达到阈值效应。

  由于编码呼吸链的一些基因缺失,故OXPHOS功能逐渐下降,能量来源表现不足,胰岛分泌能力下降,从而诱发糖尿病。一些非胰岛素依赖型糖尿病患者表现为mtDNA的点突变。如mtDNA3243位A→G突变,不仅影响了tRNALeu的合成,还累及转录终止因子的结合,造成线粒体蛋白的合成不足,影响了ATP的生产,这一突变的母亲遗传倾向较大。

  MtDNA突变的后果是十分严重的,不仅导致衰老并可引发多种疾病,尽管造成这些恶果的原因可能是多方面的。但是,由于mtDNA突变所致的呼吸链有关的酶类出现异常以及OXPHOS功能异常是不可忽视的因素,因为mtDNA编码的蛋白质亚基都是ATP生产有关的,而线粒体在细胞能量供应及维持细胞正常代谢和功能方面是举足轻重的,所以,不难理解其与机体衰老和退行性疾病的密切关系。

  目前,对于mtDNA突变已经可以用PCR、Southern杂交、电镜等手段来有效地予以检测,已经提出一些可能的治疗线粒体疾病的方法,如补充呼吸链中的辅助因子、增加可氧化基质以及抗自由基损伤等,辅酶Q已经用于某些老年性退行性疾病的治疗,mtDNA基因的导入、含正常mtDNA基因型细胞的再增殖、导入以及融合等均有可能成为mtDNA突变性疾病的基因治疗手段。

  四、染色体端粒长度与衰老

  正常人细胞随着复制能力下降,其染色体终端即端粒(telomere)的长度变短,端粒长度受染色体端粒酶(telomerase)活力的调节,端粒酶以端粒RNA为模板合成端粒序列而使端粒延长。

  有人曾经对人淋巴细胞的衰老性变化与其端粒长度以及端粒酶活性的关系在各种体内体外环境及处理因素下做了观测,发现端粒酶活力和端粒长度的调节有可能是淋巴细胞增殖的控制因素,这已在人淋巴细胞的发育、分化、激活和衰老过程中被验证。曾发现外周血CD+4T细胞的端粒长度在体内随着衰老以及从静息细胞到记忆细胞的分化过程而缩短,在体外则随着细胞的分裂而缩短,这些结果提示端粒长度与淋巴细胞增殖过程以及记忆性增殖潜力相关。与之相反,体内实验中扁桃体B细胞分化及生发中心形成过程中凋粒长度却是增加的。同时,也发现在体内T细胞发育和B细胞中端粒酶活性是被严格控制着的;在胸腺细胞和生发中心B细胞内凋粒酶活力外于高水平,在静止、成熟的外周血淋巴细胞的该酶活力处于较低水平。最后,静息淋巴细胞保持着在活化时上调端粒酶活性的能力,并且这种能力并不随着细胞的逐渐衰老而降低。虽然端粒酶对淋巴细胞的确切作用有待于进一步阐明,但这种酶可能有助于避免T、B淋巴细胞终端的缩短,并因此在淋巴细胞的生长、分化和激活过程中起重要作用。