初中数学教学中分类思想的渗透浅析

时间:2021-03-07 13:32:22 论文范文 我要投稿

初中数学教学中分类思想的渗透浅析

        数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。
数学分类思想,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。它既是一种重要的数学思想,又是一种重要的数学逻辑方法。
        所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。
        分类讨论思想,贯穿于整个中学数学的全部内容中。需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。
        分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。
        教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对分类思想的主动应用。
        一、渗透分类思想,养成分类的意识
        每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数的分类,绝对值的意义,不等式的性质等,都是渗透分类思想的很好机会。
教授完负数、有理数的概念后,及时引导学生对有理数进行分类,让学生了解到对不同的标准,有理数有不同的分类方法,为下一步分类讨论奠定基础。
        认识数a可表示任意数后,让学生对数a进行分类,得出正数、零、负数三类。
        讲解绝对值的意义时,引导学生通过对正数、零、负数的绝对值的认识,了解如何用分类讨论的方法学习理解数学概念。
        又如,两个有理数的比较大小,可分为:正数和正数、正数和零、正数和负数、负数和零、负数和负数几类情况来比较,而负数和负数的大小比较是新的知识点,这就突出了学习的重点。
        结合“有理数”这一章的教学,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。
        二、学习分类方法,增强思维的缜密性
        在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。分类的方法常有以下几种:
        1、根据数学的概念进行分类。
        有些数学概念是分类给出的,解答此类题,一般按概念的分类形式进行分类。比较与易得的错误,导致错误在于没有注意到数可表示不同类的'数。而对数进行分类讨论,既可得到正确的解答。
        2、根据数学的法则、性质或特殊规定进行分类。
        学习一元二次方程,根的判别式时,对于变形后的方程用两边开平方求解,需要分类研究大于0,等于0,小于0这三种情况对应方程解的情况。而此题的符号决定能否开平方,是分类的依据。从而得到一元二次方程的根的三种情况。
        3、根据图形的特征或相互间的关系进行分类。
        如三角形按角分类,有锐角三角形、直角三角形、钝角三角形,直线和圆根据直线与圆的交点个数可分为:直线与圆相离、直线与圆相切、直线与圆相交。
        例如等腰三角形一腰上的高与另一腰的夹角为30°,底边长为a,则其腰上的高是       。
        分析:本题根据图形的特征,把等腰三角形分为锐角三角形和钝角三角形两类作高CD,如图,可得腰上的高是或从几何图形的点和线出现不同的位置进行分类
        在证明圆周角定理时,由于圆心的位置有在角的边上、角的内部,角的外部三种不同的情况,因此分三种不同情况分别讨论证明。先证明圆心在圆周角的一条边上,这种最容易解决的情况,然后通过作过圆周角顶点的直径,利用先证明(圆心在圆周角的一条边上)的这种情况来分别解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况。这是一种从定理的证明过程中反映出来的分类讨论的思想和方法。它是根据几何图形点和线出现不同位置的情况逐一解决的方法。教材中在证明弦切角定理:弦切角等于它所夹的弧所对的圆周角。也是如此分圆心在弦切角的一条边上,弦切角的内部、弦切角的外部三种不同情况解决的。